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Abstract

On a foliated Riemannian manifold with a transverse spin structure, we give a lower bound for
the square of the eigenvalues of the transversal Dirac operator. We prove, in the limiting case,
that the foliation is a minimal, transversally Einsteinian with constant transversal scalar curvature.
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1. Introduction

In 1963, Lichnerowicz [10] proved that on a Riemannian spin manifold the square of the
Dirac operator D is given by

D2 = ∆ + 1
4σ,

where ∆ is the positive spinor Laplacian and σ the scalar curvature. In 1980, Friedrich [4]
gave a lower bound for the square of the eigenvalues of the Dirac operator in the above
equation, as follows:

λ2 ≥ n

4(n − 1)
σ0,

where σ0 = min σ . He also proved, in the limiting case, that the manifold is an Einstein.
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In 1988, Brüning and Kamber [2] defined the transversal Dirac operator Dtr on M and
proved the following equation:

D2
tr = ∇∗

tr∇tr +R∇ +K∇ ,

whereR∇ is an endomorphism containing the curvature data and K∇ a function containing
the mean curvature of the leaves.

In this paper, we study the transversal Dirac operatorDtr and its eigenvalue on the foliated
Riemannian manifold M .

This paper is organized as follows. In Section 2, we review the known facts on the foliated
Riemannian manifold. In Section 3, we study some basic properties of the transversal Dirac
operator Dtr . In Section 4, we give a lower bound for the square of the eigenvalues of
the transversal Dirac operator Dtr . In Section 5, we prove, in the limiting case, that the
foliation is a minimal, transversally Einsteinian with constant transversal scalar curvature.
The technique we use is similar to the one in [4] if we do not consider the mean curvature
of the foliation.

2. Preliminaries and known facts

Let (M, gM,F) be a (p + q)-dimensional Riemannian manifold with a foliation F of
codimension q and a bundle-like metric gM with respect to F .

We recall the exact sequence

0 → L → TM
π→Q → 0

determined by the tangent bundle L and the normal bundle Q of F . The assumption of gM
to be a bundle-like metric means that the induced metric gQ on the normal bundle Q ∼= L⊥

satisfies the holonomy invariance condition θ(X)gQ = 0 for all X ∈ Γ L, where θ(X)

denotes the Lie derivative with respect to X.
For a distinguished chart U ⊂ M the leaves of F in U are given as the fibers of a

Riemannian submersion f : U → V ⊂ N onto an open subset V of a model Riemannian
manifold N .

For overlapping charts Uα ∩ Uβ , the corresponding local transition functions γαβ =
fα ◦ f−1

β on N are isometries. Further, we denote by ∇ the canonical connection of the
normal bundle Q = TM/L of F . It is defined by

∇Xs = π([X, Ys]) for X ∈ Γ L, ∇Xs = π(∇M
X Ys) for X ∈ Γ L⊥, (2.1)

where s ∈ ΓQ, and Ys ∈ Γ L⊥ corresponding to s under the canonical isomorphism
L⊥ ∼= Q. The connection ∇ is metric and torsion-free. It corresponds to the Riemannian
connection of the model space N [7]. The curvature R∇ of ∇ is defined by

R∇
XY = ∇X∇Y − ∇Y∇X − ∇[X,Y ] for X, Y ∈ TM.

Since i(X)R∇ = 0 for any X ∈ Γ L [7], we can define the (transversal) Ricci curvature
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ρ∇ : ΓQ → ΓQ and the (transversal) scalar curvature σ∇ of F by

ρ∇(s) =
∑
a

R∇
sEa

Ea, σ∇ =
∑
a

gQ(ρ
∇(Ea), Ea),

where {Ea}a=1,... ,q is an orthonormal basis forQ.F is said to be (transversally) Einsteinian
if the model space N is Einsteinian, i.e.,

ρ∇ = 1

q
σ∇ · id (2.2)

with constant transversal scalar curvature σ∇ .
The second fundamental form of α of F is given by

α(X, Y ) = π(∇M
X Y) for X, Y ∈ Γ L. (2.3)

It is trivial that α is Q-valued, bilinear and symmetric.
The mean curvature vector field of F is then defined by

τ =
∑
i

α(Ei, Ei), (2.4)

where {Ei}i=1,... ,p is an orthonormal basis of L. The dual form κ , the mean curvature
form for L, is then given by

κ(X) = gQ(τ,X) for X ∈ ΓQ. (2.5)

The foliation F is said to be minimal (or harmonic) if κ = 0.
Let Ωr

B(F) be the space of all basic r-forms, i.e.,

Ωr
B(F) = {φ ∈ Ωr(M)|i(X)φ = 0, θ(X)φ = 0 for X ∈ Γ L}.

The foliationF is said to be isoparametric if κ ∈ Ω1
B(F). We already know that κ is closed,

i.e., dκ = 0 ifF is isoparametric [11]. Since the exterior derivative preserves the basic forms
(i.e., θ(X) dφ = 0 and i(X) dφ = 0 for φ ∈ Ωr

B(F)), the restriction dB = d|Ω∗
B(F) is well

defined. The adjoint operator δB of dB is given by

δBφ = (−1)q(r+1)+1∗̄(dB − κB∧)∗̄φ for φ ∈ Ωr
B(F), (2.6)

where κB is the basic component of κ and ∗̄ : Ωr
B(F) → Ω

q−r
B (F) a star operator [1].

When κ is basic, this formula reduces to Theorem 12.10 in [11]. The basic Laplacian acting
on Ω∗

B(F) is defined by

∆B = dBδB + δBdB.

If F is the foliation by points of M , the basic Laplacian is the ordinary Laplacian.

3. The transversal Dirac operator

Let E be a complex Hermitian foliated bundle [8] over M which is a Clifford module
over Cl(Q), the transversal Clifford algebra of F . We assume that E carries a Hermitian
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metric 〈·, ·〉 and an orthogonal connection ∇E such that

1. The Clifford multiplication ‘·’ by unit vectors in Q is orthogonal, i.e., at each point
x ∈ M ,

〈e · Φ,Ψ 〉 + 〈Φ, e · Ψ 〉 = 0 (3.1)

for all Φ,Ψ ∈ Ex and all unit vectors e ∈ Qx .
2. The covariant derivative ∇E on E is a module derivation, i.e.,

∇E(s · Φ) = (∇s) · Φ + s · (∇EΦ) (3.2)

for all s ∈ Γ Cl(Q) and all Φ ∈ ΓE. If it does not cause any confusion, we will
henceforward use ∇ = ∇E . Taking π̂ to denote the projection

π̂ : C∞(T ∗M ⊗ E) → C∞(Q∗ ⊗ E) ∼= C∞(Q ⊗ E),

we define the transversal Dirac operator D′
tr by

D′
tr = · ◦ π̂ ◦ ∇.

If {Ea}a=1,... ,q is taken to be a local orthonormal basic frame in Q, then

D′
tr =

∑
a

Ea · ∇Ea .

In [3], it was shown that the formal adjoint D′∗
tr is given by D′∗

tr = D′
tr −κ· and that therefore

Dtr = D′
tr − 1

2κ· (3.3)

is a symmetric, transversally elliptic differential operator, with symbol σDtr satisfying
σDtr (x, ξ) = ξ for ξ ∈ Q∗

x and σDtr (x, ξ) = 0 for ξ ∈ L∗
x . We define the subspace

ΓB(E) of basic or holonomy invariant sections of E by

ΓB(E) = {Φ ∈ ΓE|∇XΦ = 0 for X ∈ Γ L}. (3.4)

If we consider the vector bundle E = ∧Q∗ ⊗ C, then we have

ΓB(E) = Ω∗
B(F) ⊗ C. (3.5)

From (3.3), we see that Dtr leaves ΓB(E) invariant if and only if the foliation F is isopara-
metric, i.e., κ ∈ Ω1

B(F). Let Db = Dtr|ΓB(E) : ΓB(E) → ΓB(E). This operator Db is
called the basic Dirac operator on (smooth) basic sections ΓB(E). We now define ∇∗

tr∇tr :
ΓE → ΓE as

∇∗
tr∇trΦ = −

∑
a

∇2
Ea,Ea

Φ + ∇κΦ, (3.6)

where ∇2
v,w = ∇v∇w − ∇∇vw for any v,w ∈ TM.
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Proposition 3.1. Let (M, gM,F) be a compact Riemannian manifold with a foliation F
and a bundle-like metric gM with respect to F . Then

〈〈∇∗
tr∇trΦ,Ψ 〉〉 = 〈〈∇trΦ,∇trΨ 〉〉

for all Φ,Ψ ∈ ΓE, where 〈〈Φ,Ψ 〉〉 = ∫
M

〈Φ,Ψ 〉 is the inner product on E.

Proof. Fix x ∈ M and choose an orthonormal basic frame {Ea} with the property that
(∇Ea)x = 0 for all a. Then we have at the point x that for any Φ,Ψ ,

〈∇∗
tr∇trΦ,Ψ 〉 = −

∑
a

〈∇Ea∇EaΦ,Ψ 〉 + 〈∇κΦ,Ψ 〉

= −
∑
a

Ea〈∇EaΦ,Ψ 〉 +
∑
a

〈∇EaΦ,∇EaΨ 〉 + 〈∇κΦ,Ψ 〉

= −div∇(v) + 〈∇EaΦ,∇EaΨ 〉 + 〈∇κΦ,Ψ 〉, (3.7)

where v ∈ ΓQ defined by the condition that gQ(v,w) = 〈∇wΦ,Ψ 〉 for all w ∈ ΓQ. The
last line of (3.7) is proved as follows. At x ∈ M ,

div∇(v) =
∑
a

gQ(∇Eav,Ea) =
∑
a

EagQ(v,Ea) =
∑
a

Ea〈∇EaΦ,Ψ 〉.

By the Green’s theorem on the foliated Riemannian manifold [12], we have∫
M

div∇(v) = 〈〈κ, v〉〉 = 〈〈∇κΦ,Ψ 〉〉. (3.8)

The result is due to integration of (3.7). �

We now define a canonical sectionR∇ of Hom(E,E) by the formula

R∇(Φ) =
∑
a<b

Ea · Eb · RE
EaEb

Φ,

where RE is the curvature tensor of E. If F is isoparametric, then we have the Bochner–
Weitzenböck-type formula

D2
trΦ = ∇∗

tr∇trΦ +R∇(Φ) +K∇Φ, (3.9)

where K∇ = 1
2 {−δκ + 1

2 |κ|2} [2,3,5]. On ΓB(E), we have

D2
b = ∆|ΓB(E), (3.10)

where ∆ = ∇∗∇ +R∇ +K∇ is a strongly elliptic, symmetric operator of Laplace type. To
prove theorems in this paper, it is useful to assume that κ is divergence-free, i.e., δκ = 0.
Since κ is already closed, κ is a harmonic 1-form. We then have K∇ = 1

4 |κ|2 and the
resulting local equation

〈〈D2
bΦ,Φ〉〉 = ‖∇Φ‖2 + 〈〈R∇(Φ),Φ〉〉 + 1

4‖|κ|Φ‖2 (3.11)

implies transversal vanishing theorems for Ker(Db) by the usual Bochner–Lichnerowicz
argument, providedR∇ ≥ 0 andR∇ is positive at least at one point x0 ∈ M [2].
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Lemma 3.2. Let F be a Riemannian foliation. Then the operators dB and δB on Ω∗
B(F)

are given by

dB =
∑
a

θa ∧ ∇Ea , δB = −
∑
a

i(Ea)∇Ea + i(κB),

where {Ea} is a local orthonormal basic frame in Q and {θa} its gQ-dual 1-form.

Proof. Fix x ∈ M and choose an orthonormal basic frame {Ea} so that (∇Ea)x = 0 for all
a. Since dB is restriction of d , the first formula is trivial. Next we prove the second formula.
Note that Ω∗

B(F) is a transversal Clifford algebra with the Clifford multiplication defined
as follows: if θ ∈ Ω1

B(F) and φ ∈ Ωr
B(F), then

θ · φ = θ ∧ φ − i(v)φ, (3.12)

where v is gQ-dual vector of θ . Hence, if we use the properties (3.1), (3.2) and (3.12), then
for any φ ∈ Ωr

B(F) and ψ ∈ Ωr+1
B (F), we have that at x,

〈dBφ,ψ〉 =
∑
a

〈θa ∧ ∇Eaφ,ψ〉 =
∑
a

〈Ea · ∇Eaφ,ψ〉

= −
∑
a

〈∇Eaφ,Ea · ψ〉 = −
∑
a

Ea〈φ,Ea · ψ〉 +
∑
a

〈φ,Ea · ∇Eaψ〉

= −div∇(v) +
∑
a

〈φ,−i(Ea)∇Eaψ〉,

where v ∈ ΓQ defined by the condition that gQ(v,w) = 〈φ,w · ψ〉 for all w ∈ ΓQ. The
first part of the last line in the above equation is proved as follows. At x ∈ M ,

div∇(v) =
∑
a

gQ(∇Eav,Ea) =
∑
a

EagQ(v,Ea) =
∑
a

Ea〈φ,Ea · ψ〉.

By Green’s theorem on the foliated Riemannian manifold [12], we get∫
M

div∇(v) = 〈〈κ, v〉〉 = 〈〈φ, κ · ψ〉〉.

Hence, we have

〈〈dBφ,ψ〉〉 = −〈〈φ, κB · ψ〉〉 + 〈〈φ,−
∑
a

i(Ea)∇Eaψ〉〉

= 〈〈φ,−
∑
a

i(Ea)∇Eaψ + i(κB)ψ〉〉,

where κB is a basic component of κ . This finishes the proof. �

Note that the proof of Lemma 3.2 is different from that established in [1].
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4. The first eigenvalue of Dtr

Let (M, gM,F) be a Riemannian manifold with a transversally oriented Riemannian
foliationF of codimension q and a bundle-like metric gM with respect toF . Let SO(q) →
P → M be the principal bundle of (oriented) transverse orthonormal framings. Then a
transverse spin structure is a principal Spin(q)-bundle P̃ together with two sheeted covering
ξ : P̃ → P such that ξ(p · g) = ξ(p)ξ0(g) for all p ∈ P̃ , g ∈ Spin(q), where ξ0 :
Spin(q) → SO(q) is a covering. In this case, the foliation F is called a transverse spin
foliation. We then define the vector bundle S associated with P̃ by

S = P̃ ×Spin(q) Sq, (4.1)

where Sq is the irreducible spinor space associated to Q. The Hermitian metric on S is
induced from gQ, and the Riemannian connection ∇ on P defined by (2.1) can be lifted to
one on P̃ , in particular, to one on S, which will be denoted by the same letter. S is called
the foliated spinor bundle. It is well known that the curvature transform RS [9] is given as

RS
XYΦ = 1

4

∑
a,b

gQ(R
∇
XYEa,Eb)Ea · Eb · Φ for X, Y ∈ TM. (4.2)

On the foliated spinor bundle S, we have

R∇ = 1
4σ

∇ , (4.3)

∑
a

Ea · RS
XEa

Φ = −1

2
ρ∇(X) · Φ (4.4)

for X ∈ ΓQ [4]. From (3.9), we know that on an isoparametric transverse spin foliation
with δκ = 0, the transverse Dirac operator Dtr satisfies

D2
tr = ∇∗

tr∇tr + 1
4σ

∇ + 1
4 |κ|2. (4.5)

Now, we introduce a new connection
f

∇ on S as

f

∇XΦ = ∇XΦ + fπ(X) · Φ for X ∈ TM, (4.6)

where f is a real-valued basic function on M and π : TM → Q. Trivially, this connection
f

∇ is a metric connection. Moreover, we have the following lemma.

Lemma 4.1. Let (M, gM,F) be a compact Riemannian manifold with a transversally
oriented foliation F and bundle-like metric gM with respect to F . Then

〈〈 f∇ tr
∗ f

∇ trΦ,Ψ 〉〉 = 〈〈 f∇ trΦ,
f

∇ trΨ 〉〉
for all Φ,Ψ ∈ Γ S.

Proof. Fix x ∈ M and choose an orthonormal basic frame {Ea} such that (∇Ea)x = 0 for
all a. Then, we have that at x,
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〈 f∇ tr
∗ f

∇ trΦ,Ψ 〉 = −
∑
a

〈 f∇ tr
f

∇ trΦ,Ψ 〉 + 〈 f∇κΦ,Ψ 〉

= −
∑
a

Ea〈
f

∇EaΦ,Ψ 〉+
∑
a

〈 f∇EaΦ,
f

∇EaΨ 〉+〈∇κΦ,Ψ 〉+〈f κ · Φ,Ψ 〉

= −
∑
a

Ea〈∇EaΦ,Ψ 〉 −
∑
a

〈fEa · Φ,Ψ 〉 +
∑
a

〈 f∇EaΦ,
f

∇EaΨ 〉

+〈∇κΦ,Ψ 〉 + 〈f κ · Φ,Ψ 〉
= −div∇(V ) − div∇(fW) +

∑
a

〈 f∇EaΦ,
f

∇EaΨ 〉 + 〈∇κΦ,Ψ 〉

+〈f κ · Φ,Ψ 〉,
where V,W ∈ ΓQ ⊗ C are defined by the conditions that gQ(V,Z) = 〈∇ZΦ,Ψ 〉 and
gQ(W,Z) = 〈Z · Φ,Ψ 〉 for all Z ∈ ΓQ. The last line is proved as follows: At x ∈ M ,

div∇(V ) =
∑
a

gQ(∇EaV,Ea) =
∑
a

EagQ(V,Ea) =
∑
a

Ea〈∇EaΦ,Ψ 〉.

Similarly, we have div∇(fW) = ∑
aEa〈fEa · Φ,Ψ 〉.

By Green’s theorem on the foliated Riemannian manifold [12]∫
M

div∇(V ) = 〈〈κ, V 〉〉 = 〈〈∇κΦ,Ψ 〉〉. (4.7)

Similarly, we have
∫
M

div∇(fW) = 〈〈f κ · Φ,Ψ 〉〉. By integrating, we obtain our result. �

On the other hand, by using (3.6) and (4.6), we have

f

∇ tr
∗ f

∇ trΦ = −
∑
a

f

∇Ea

f

∇EaΦ + f

∇κΦ = −
∑
a

∇Ea∇EaΦ + ∇κΦ − f
∑
a

Ea · ∇EaΦ

−
∑
a

∇Ea (fEa · Φ) + f κ · Φ − f 2
∑
a

Ea · Ea · Φ.

From the definition of Clifford multiplication and (3.2), we have

f

∇ tr
∗ f

∇ trΦ = −
∑
a

∇Ea∇EaΦ + ∇κΦ − 2f

(∑
a

Ea · ∇EaΦ − 1

2
κ · Φ

)

−
∑
a

Ea(f )Ea · Φ + qf2Φ.

From this equation, we have

f

∇ tr
∗ f

∇ trΦ = ∇∗
tr∇trΦ − 2fDtrΦ − grad∇(f ) · Φ + qf2Φ, (4.8)

where grad∇(f ) = ∑
aEa(f )Ea is a transversal gradient of f . From (4.5) and (4.8), we

have

f

∇ tr
∗ f

∇ trΦ = D2
trΦ − 2fDtrΦ − grad∇(f ) · Φ + (qf2 − 1

4 (σ
∇ + |κ|2))Φ. (4.9)
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Let DtrΦ = λΦ(Φ �= 0). From (4.9) and Lemma 4.1, we have

‖ f

∇ trΦ‖2 =
∫
M

(
λ2 − 2f λ + qf2 − 1

4
(σ∇ + |κ|2)

)
|Φ|2 −

∫
M

〈grad∇(f ) · Φ,Φ〉.

Note that for all X ∈ ΓQ and Φ ∈ Γ S,

〈X · Φ,Φ〉 = 〈Φ,X · Φ〉 = −〈X · Φ,Φ〉. (4.10)

Hence, (4.10) implies that 〈grad∇(f ) · Φ,Φ〉 is a pure imaginary. Hence, we have

‖ f

∇ trΦ‖2 =
∫
M

(
λ2 − 2f λ + qf2 − 1

4
(σ∇ + |κ|2)

)
|Φ|2, (4.11)

〈grad∇(f ) · Φ,Φ〉 = 0. (4.12)

If we put f = λ/q, then from (4.11), we have

‖ f

∇ trΦ‖2 =
∫
M

(
q − 1

q
λ2 − 1

4
Kσ

)
|Φ|2, (4.13)

where Kσ = σ∇ + |κ|2. From (4.13), we have the following theorem.

Theorem 4.2. Let (M, gM,F) be a Riemannian manifold with an isoparametric transverse
spin foliationF of codimension q > 1 and bundle-like metric gM with respect toF . Assume
that the mean curvature κ of F satisfies δκ = 0 and Kσ ≥ 0. Then the eigenvalue λ of the
transverse Dirac operator Dtr satisfies

λ2 ≥ 1

4

q

q − 1
K0

σ ,

where K0
σ = minKσ .

Remark. IfF is a point foliation, then the transversal Dirac operator is just a Dirac operator
on an ordinary manifold. Therefore, Theorem 4.2 is a generalization of the result on an
ordinary manifold (cf. [4]).

Corollary 4.3. In addition to assumptions in Theorem 4.2, if the transverse scalar curvature
is zero, then we get

λ2 ≥ q

4(q − 1)
|κ|20,

where |κ|0 = min|κ|.

5. The limiting case

In this section, we study the foliated Riemannian manifold which admits a non-zero
transversal spinor Ψ1 such that DtrΨ1 = λ1Ψ1 with λ2

1 = 1
4 (q/(q − 1))K0

σ . We define



262 S.D. Jung / Journal of Geometry and Physics 39 (2001) 253–264

Ricf∇ : ΓQ ⊗ S → S by

Ricf∇(X ⊗ Ψ ) =
∑
a

Ea · Rf
XEa

Φ, (5.1)

where Rf is the curvature tensor with respect to
f

∇. By long calculation, for X ∈ ΓQ and
Φ ∈ Γ S we have∑

a

Ea · Rf
XEa

Φ =
∑
a

Ea · RS
XEa

Φ − qX(f )Φ

−grad∇(f ) · X · Φ + 2(q − 1)f 2X · Φ. (5.2)

From (4.4) and (5.2), we have

Ricf∇(X ⊗ Φ) = − 1
2ρ

∇(X) · Φ + 2(q − 1)f 2X · Φ − qX(f )Φ − grad∇(f ) · X · Φ
(5.3)

for X ∈ ΓQ. From (5.3), we have the following proposition.

Proposition 5.1. If M admits a non-zero transversal Killing spinor Φ (i.e., it is defined by

∇f
trΦ = 0), then f is constant.

Proof. If
f

∇XΦ = 0 for any X ∈ ΓQ, then Ricf∇ = 0. Hence, from (5.3), we have

− 1
2ρ

∇(X) · Φ + 2(q − 1)f 2X · Φ − grad∇(f ) · X · Φ − qX(f )Φ = 0. (5.4)

If we put X = grad∇(f ), then we have

〈(− 1
2ρ

∇(X) + 2(q − 1)f 2 grad∇(f )) · Φ,Φ〉 = (q − 1)|grad∇(f )|2|Φ|2. (5.5)

From (4.10), the left-hand side is pure imaginary, but the right-hand side is real. Therefore,
both sides are zero. Hence, if q ≥ 2, then we have

grad∇(f ) = 0.

That is, X(f ) = 0 for any X ∈ ΓQ. Since f is a basic function (i.e., X(f ) = 0 for any
X ∈ Γ L), f is constant. �

We now consider the limiting case. Let λ2
1 = 1

4 (q/(q − 1))K0
σ . From (4.13), we have

‖f1∇ trΨ1‖2 =
∫
M

1

4
(K0

σ − Kσ )|Ψ1|2, (5.6)

where f1 = λ1/q. From this equation, we have

Kσ = K0
σ ,

f1∇ trΨ1 = 0. (5.7)

From (5.3), we have

ρ∇(X) = 4(q − 1)f 2
1 X = 1

q
K0

σX for X ∈ ΓQ. (5.8)
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This means that F is a transversally Einsteinian with constant transversal scalar curvature
σ∇ . Hence, we have the following theorem.

Theorem 5.2. Let (M, gM,F) be a compact Riemannian manifold with an isoparametric
transverse spin foliation F of codimension q > 1 and a bundle-like metric gM with respect
to F . Assume that the mean curvature κ satisfies δκ = 0 and Kσ > 0. If there exists an
eigenspinor field Ψ1 of transversal Dirac operator Dtr for the eigenvalue λ2

1 = (q/4(q −
1))K0

σ , then F is a minimal, transversally Einsteinian with constant transversal scalar
curvature.

Proof. If we compare (2.2) with (5.8), we know that |κ| = 0. This implies that F is
minimal. �

Remark. Theorem 5.2 implies that the estimate in Theorem 4.2 is not sharp. In fact, if the
foliation F is not minimal, then λ2 > (q/4(q − 1))K0

σ . So, we can assume that a sharper
estimate than the one in Theorem 4.2 exists.

From now on, if we let F be a minimal foliation, then on Ω∗
B(F), we have

Db = dB + δB, ∆B = D2
b . (5.9)

Hence, the eigenvalue µ of ∆B satisfies the inequality in Theorem 4.2. Moreover, for any
basic r-form φ ∈ Ωr

B(F), we have, by long calculation,∑
a

Ea · φ · Ea = (−1)r−1(q − 2r)φ, (5.10)

where {Ea} is an orthonormal basic frame field of Q. From (5.7), (5.9) and (5.10), we have

Db(φ · Ψ1)= (dB + δB)φ · Ψ1 + (−1)r (q − 2r)f φ · Ψ1 = (dB + δB)φ · Ψ1

+(−1)r (q − 2r)
λ1

q
φ · Ψ1,

where Ψ1 is the non-zero eigenspinor corresponding to λ1. If φ is a basic harmonic form,
then we have

Db(φ · Ψ1) = (−1)r
(

1 − 2r

q

)
λ1φ · Ψ1. (5.11)

This leads us to the following proposition (cf. [6]):

Proposition 5.3. Let (M, gM,F)be a compact Riemannian manifold with an isoparametric
transverse spin foliation F with codimension q > 1 and a bundle-like metric gM with
respect to F . Assume that the mean curvature κ satisfies δκ = 0 and Kσ > 0. If M admits
an eigenspinor field Ψ1 associated with λ1 such that λ2

1 = (q/4(q − 1))K0
σ , then any basic

harmonic form kills the eigenspinor Ψ1.

Proof. By Theorem 5.2,F is minimal. Hence, Eq. (5.11) implies that (−1)r (1−(2r/q))λ1

is an eigenvalue of Db. But since λ1 is the first eigenvalue of Db, this is impossible. So, we
have φ · Ψ1 = 0. �
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Corollary 5.4. Under the same assumption as in Proposition 5.3, we have

H 1
B(F) = 0,

where Hr
B(F) is the basic cohomology.

Proof. For a basic harmonic 1-formφ, we haveφ ·Ψ1 = 0. Hence, 0 = φ ·φ ·Ψ1 = −|φ|2Ψ1.
Since Ψ1 �= 0, we have φ = 0. �
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